
IEEE TRANSACTIONS ON NETWORKING 1

Asymptotically Tight Approximation for Online
File Caching With Delayed Hits and Bypassing

Haisheng Tan , Senior Member, IEEE, Yi Wang , Chi Zhang , Guopeng Li , Haohua Du , Zhenhua Han ,
Shaofeng H.-C. Jiang, and Xiang-Yang Li , Fellow, IEEE

Abstract—In latency-sensitive file caching systems such as
Content Delivery Networks (CDNs) and Mobile Edge Computing
(MEC), the latency of fetching a missing file to the local cache
can be significant. Recent studies have revealed that successive
requests for the same missing file before the fetching process
completes could still suffer latency (so-called delayed hits).
Motivated by the practical scenarios, we study the online general
file caching problem with delayed hits and bypassing, i.e., a
request may be bypassed and processed directly at the remote
data center. The objective is to minimize the total request latency.
We present a general reduction that turns a traditional file
caching algorithm into one that can handle delayed hits. Based
on this reduction, we propose an efficient online file caching
algorithm, called CaLa, with an asymptotically tight competitive
ratio as O(Z logK), where Z is the maximum fetching latency
of any file and K is the cache size. Extensive simulations on the
production data trace from Google and the Yahoo benchmark
illustrate that CaLa can reduce the latency by up to 8.48%
compared with the state-of-the-art schemes dealing with delayed
hits without bypassing, and this improvement increases to 26.00%
if bypassing is allowed. Furthermore, by upgrading the method
for estimating files’ weights in CaLa, we propose CaLa+, which
further reduces the total latency by more than 5%.

Index Terms—Approximation algorithms, content distribution
networks, cache storage, edge computing.

I. INTRODUCTION

ONLINE file caching is a fundamental problem widely
studied in computer and networking systems. The

Received 25 November 2023; revised 26 August 2024; accepted 28 Febru-
ary 2025; approved by IEEE TRANSACTIONS ON NETWORKING Editor
G. Joshi. This work was supported in part by the 2030 National Key AI
Program of China under Grant 2021ZD0110400, in part by NSFC under
Grant 62132009 and Grant 62102016, in part by the Fundamental Research
Funds for the Central Universities at China, and in part by the Startup Fund
from Peking University. A preliminary version of this work titled “Online
File Caching in Latency-Sensitive Systems with Delayed Hits and Bypass-
ing” was published in IEEE INFOCOM 2022, London, United Kingdom,
May, 2022 [DOI: 10.1109/INFOCOM48880.2022.9796969]. (Corresponding
author: Chi Zhang.)

Haisheng Tan, Yi Wang, Guopeng Li, and Xiang-Yang Li are with the
LINKE Laboratory and the CAS Key Laboratory of Wireless-Optical Com-
munications, University of Science and Technology of China (USTC), Hefei
230027, China (e-mail: hstan@ustc.edu.cn; wangyi1024@mail.ustc.edu.cn;
guopengli@mail.ustc.edu.cn; xiangyangli@ustc.edu.cn).

Chi Zhang is with the School of Computer Science and Information
Engineering, Hefei University of Technology, Hefei 230009, China, and also
with the LINKE Laboratory and the CAS Key Laboratory of Wireless-Optical
Communications, University of Science and Technology of China (USTC),
Hefei 230027, China (e-mail: zhangchi@hfut.edu.cn).

Haohua Du is with the School of Cyber Science and Technology, Beihang
University, Beijing 100191, China (e-mail: duhaohua@buaa.edu.cn).

Zhenhua Han is with Microsoft Research Asia (MSRA), Shanghai 200232,
China (e-mail: hzhua201@gmail.com).

Shaofeng H.-C. Jiang is with the Center on Frontiers of Com-
puting Studies, Peking University, Beijing 100871, China (e-mail:
shaofeng.jiang@pku.edu.cn).

Digital Object Identifier 10.1109/TON.2025.3549289

Fig. 1. An example of an online file caching system, where a file request may
be served at the local cache or bypassed directly to the remote data center.

conventional objective of file caching is to minimize the
cache misses or the total cost of file retrievals. In general,
an exquisite online file caching algorithm should provide a
lower average file access latency, resulting in a better user
experience. When all files have uniform size and uniform fetch
cost (i.e., the paging problem), intuitive algorithms such as
Least Recently Used (LRU) and First In First Out (FIFO)
can achieve a competitive ratio of O(K) with respect to
minimizing the number of misses, where K is the cache
size [2].

However, in practical applications such as Content Delivery
Networks (CDNs) [3] and Mobile Edge Computing (MEC)
[4], due to the long physical distance, the latency for fetching
missing files from the remote data center can be more than
100ms [5], [6], whereas the average inter-time for two con-
secutive file requests could be as low as 1µs [7], e.g., 1M
file requests per second. An interesting case appears. During
the period when a missed file is retrieved from the remote
data center, the subsequent requests for this file cannot be
served immediately, and thus should not be simply treated as
a hit. This case is also different from a simple miss as the
requests can be served as a hit after the file is fetched to
local servers. Hence we called this case a delayed hit [7].
Moreover, traditional cache models [2], [8], [9], [10], [11]
assume all the missing files have to be fetched and stored in
the local cache before being accessed, while in the scenario
of cloud-related applications, file requests can be sent to and
served directly at the remote cloud, which we call bypassing.
Fig. 1 illustrates online file caching in a cloud-based system
with file misses, hits, delayed hits and bypassing, where there
is a local cache server and multiple remote data centers. The
first request for X arrives at T1. Since X is not stored in the
cache, it is a miss and triggers fetching X from Data Center

2998-4157 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and
similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on March 25,2025 at 09:54:52 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-3133-1430
https://orcid.org/0009-0007-8980-5591
https://orcid.org/0000-0003-1160-5497
https://orcid.org/0000-0002-0713-8964
https://orcid.org/0000-0002-8492-3990
https://orcid.org/0000-0002-2880-7100
https://orcid.org/0000-0002-6070-6625


2 IEEE TRANSACTIONS ON NETWORKING

Fig. 2. An example in general file caching with delayed hits and bypassing, where files have heterogeneous size and latency. The size of cache K = 4, files’
size sA = sB = sC = sD = 1, sL = 2, fetching latency zA = zB = 2, zC = zD = zL = 1. The average latency of LRU-MAD, Optimal and Optimal
with bypassing are 11/9, 4/9 and 1/3, respectively.

1, and X will not be ready in the local cache until time T3
due to the fetching latency. Then, another request for X arrives
at T2 (T1 < T2 < T3), which will be buffered and served at
T3, which is a delayed hit. The third request for X arrives at
T3 is a hit. For the request for Y arrives at T4, we choose to
bypass this request directly to avoid space allocation in the
cache.

So far, although noted in the literature (e.g., [12]), research
on online file caching with delayed hits is still limited. A
representative work addressing this issue is the online paging
problem1 studied in [7], where the authors highlighted the
importance of delayed hits in high-throughput systems. They
proposed MAD, an online solution that integrates the aggre-
gate delay of files into existing practical caching algorithms
such as LRU [13], ARC [14] and LHD [15]. However, in
cloud-based applications, file sizes vary significantly, with
differences up to thousands of times as observed in Google
product traces [16]. Hence, the fetching costs of various
files could be quite different, and the general file caching
problem should be investigated. Moreover, bypassing should
also be considered in cloud-based systems. The following
motivating example illustrates that the existing schemes fail
to tackle online general file caching with delayed hits and
bypassing.

Motivating Example. As shown in Fig. 2, there are 5
different files A,B,C,D and L that will be requested, with
sizes sA = sB = sC = sD = 1, sL = 2, and fetching latencies
zA = zB = 2, zC = zD = zL = 1. The latency to bypass a
request is the same as fetching this file. The cache size is
4. Initially, there are A,B and L in the cache. The sequence
of file requests that will arrive is C,D,A,A,L,B,B,C,D.
Upon the arrival of the first request for C, one of A,B or
L has to be evicted to make room for C. According to the
guidelines of least recently used, LRU-MAD will evict A and
put C into the cache. For the same reason, B is replaced by
D. Then two consecutive requests for A will cause a miss and
a delayed hit, respectively. After L is requested, C is evicted
from the cache and L is stored in the cache. The following two
consecutive requests for B will also cause a miss and a delayed

1Throughout this paper, paging represents the special case of the caching
problem where the size and fetching cost are both uniform for each file.
Weighted paging means the uniform file size but non-uniform fetching costs.
File caching means non-uniform file sizes and the fetching cost can be uniform
or non-uniform. When the size and fetching cost are both non-uniform, we
call it the general file caching.

hit, respectively. Finally, the last requests for C and D will also
be missed, and the average latency of LRU-MAD is 11/9. By
contrast, the optimal solution will evict the larger file L when
the first request for C arrives and the subsequent requests for
A will be two hits. When L is requested, A and D will be
evicted since A does not appear in subsequent requests and
D has lower fetching latency than B. The average latency of
optimal is 4/9. If bypassing is allowed, the optimal will bypass
all the requests for L since its larger size and lower fetching
latency. The average latency of optimal with bypassing is 1/3.

In this paper, we study the online general file caching
problem with delayed hits and bypassing. We proposed a novel
framework to effectively transform any existing algorithm in
classic file caching models, i.e., without delayed hits consid-
ered, to a solution for our model with delayed hits. The main
idea is to find an estimated weight for each file, which can
express the total cost caused by this file’s miss, and run the
classic algorithm using the estimated weights of all files. Our
contributions are summarized as follows.

• We investigate a practical online general file caching
problem with bypassing to minimize the total latency
of file requests, where both the file size and fetching
latency are non-uniform. We first prove the lower bound
Ω(ZK) and Ω(Z logK) of this problem in deterministic
and randomized algorithms, where Z is the maximum of
the file’s fetching latency and K is the cache size (in
Sec. II).

• We derive a deterministic online algorithm, called CaLa,
with a competitive ratio of O(ZK). Furthermore, the
randomized version of CaLa is O(Z logK)-competitive.
To the best of our knowledge, CaLa is the first online
algorithm with competitive ratios for the online general
file caching problem with delayed hits and bypassing.
Besides, we propose CaLa+ which improves the method
for estimating the weights of files during fetching in
CaLa(in Sec. III).

• We conduct extensive simulations on Google’s production
trace and the Yahoo benchmark. The results show that
compared with LRU-MAD, the state-of-the-art algorithm
that deals with delayed hits, CaLa can reduce the
latency by up to 8.48% without bypassing, which will
be increased to 26.00% if allow bypassing. Moreover,
CaLa+ decreases the latency by more than 5% compared
to CaLa (in Sec. IV).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on March 25,2025 at 09:54:52 UTC from IEEE Xplore.  Restrictions apply. 



TAN et al.: ASYMPTOTICALLY TIGHT APPROXIMATION FOR ONLINE FILE CACHING 3

II. PROBLEM FORMULATION

A. System Model

Cache System. Motivated by applications such as CDN and
MEC, we consider the online general file caching model, a
local cache server and remote data centers. Let K be the cache
size, and F = {f1, f2, . . ., fN} be the set of all kinds of files,
where each file fi ∈ F (1 ≤ i ≤ N) has size sfi and fetching
latency zfi . We also use si to represent sfi and use zi to
represent zfi for concision when there is no ambiguity. Set
Z = maxi zi. Without loss of generality, we assume that all
file sizes are integers. Naturally, the sum of sizes of files stored
in the cache can never exceed K, i.e.,

∑
f in cache sf ≤ K.

File Request Model. Let R = (r1, r2, . . .) be the sequence
of file requests, arriving in an online manner, i.e., we cannot
get future information and no assumption is made about the
arrival patterns. Each request r requests to access a specific
file f ∈ F . Time is divided into slots of unit size. Multiple
different kinds of file requests might come within one time
slot, while each file f ∈ F can be requested at most once in
each slot.2

Transmission Latency. When a request arrives at time T, if
the requested file f is already in the local cache, this request is
called a hit and it can be served immediately with no latency.
Otherwise, it is a miss and has to suffer a latency to fetch
this file from the remote data center; alternatively, we might
forward this request to get the file from the remote data center,
i.e., bypassing the request. We set the latency to fetch f taking
zf time slots, i.e., this request cannot be served until time
T + zf . We also set serving a request by bypassing taking
zf slots, because it also needs to interact with the remote
data center similar to fetching. When fetching a file, we need
to decide which files in the cache should be evicted if the
cache is already out of space. Before file f is fetched and
stored in the cache, all requests that require f at time slot t′ ∈
{T+1, T+2, . . ., T+zf−1} can only be served at time T+zf
and suffer a latency of zf − (t′ − T ), which are delayed hits.
Besides, if a file f is evicted when it is still being fetched from
the remote data center, the latency of every request of f during
this fetching process will be increased to zf , as these requests
will be served by bypassing. Here, evicting a file during
fetching means deleting its incomplete part which has already
arrived in the cache and releasing the space preparing for its
remaining part. We call this case, evicting during fetching,
as EDF.

B. Problem Formulation

To formulate the online caching problem in this paper
(Problem P), we first define variables in Table I below.

Optimization Goal. The goal of this problem is to minimize
the total latency of all requests:

min
∑
f∈F

∑
i

d(f, i). (1)

2We set the time slot small enough so that the minimal interval of two
consecutive requests on the same file is at least one time slot. Thus, each file
can be requested at most once in each slot.

TABLE I
NOTATION SUMMARY

State Definition. Variable x(f, t) denotes the state of file f
at time t, i.e., x(f, t) = 1, 0, and −1 indicate that at time t, file
f is out of cache, in cache, and during fetching, respectively.

x(f, t) ∈ {−1, 0, 1}, ∀f, t. (2)
x(f, 0) = 1, ∀f. (3)

Cache Capacity Constraint. Constraint 4 ensures that the
cache space used is always less than or equal to the total cache
size K at any time.∑

f∈F

sf min{1− x(f, t), 1} ≤ K, ∀t. (4)

State at Request Arrival. For concision, we use x′(f, i) to
represent the state of file f when the i-th request of f arrives.

x′(f, i) = x(f, t(f, i)), ∀f, i. (5)

Fetch Start Time. If the request arrives while the file is
being fetched, v(f, i) is the fetch start time.

v(f, i) = t(f, i− 1)− zf + d(f, i− 1), if x′(f, i) = −1.
(6)

EDF Indicator. If x′(f, i) = −1 and the i-th request of file
f is an EDF, y(f, i) is 1; else, y(f, i) is 0.

y(f, i) =

1, if
v(f,i)+zf∏
k=t(f,i)+1

(x(f, k − 1)− x(f, k) + 2) = 0,

0, otherwise.
(7)

If the request of file f at time t is an EDF case, it implies
that there must be a time slot k after t and before v(f, i) + zf
such that the file was being fetched in the slot prior to k and is
out of the cache at time k, i.e., x(f, k−1) = −1, x(f, k) = 1,
x(f, k − 1)− x(f, k) + 2 = 0.

Latency Calculation. If a requested file is in the cache, the
latency of the request is 0 (Eqn. 8). If it is out of the cache,
the latency is zf (Eqn. 9). When the requested file is being
fetched, the latency depends on y(f, i) (Eqn. 10). Specifically,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on March 25,2025 at 09:54:52 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE TRANSACTIONS ON NETWORKING

if y(f, i) = 1, it means this file will be evicted before the
fetching process is completed, which causes zf latency. By
contrast, if y(f, i) = 0, it indicates the fetching process ends
with the file arriving in the cache. In this case, the latency
d(f, i) is calculated as t(f, i−1) +d(f, i−1)− t(f, i), which
is the time when file f will arrive at the cache minus the current
time.

d(f, i) = 0, if x′(f, i) = 0, (8)
d(f, i) = zf , if x′(f, i) = 1, (9)

d(f, i) =


v(f, i) + zf − t(f, i),

if x′(f, i) = −1, y(f, i) = 0,

zf , if x′(f, i) = −1, y(f, i) = 1.

(10)

C. Problem Hardness

When no bypassing is considered, Problem P has been
proven to have a lower bound of the competitive ratio of
Ω(ZK) [17] for deterministic algorithms. By using two kinds
of request groups: pure and bursty requests similar to [17], we
construct the request sequence to prove our general caching
problem P has the following lower bounds for deterministic
and randomized solutions.

Theorem 1: All the deterministic online algorithms for
problem P have a lower bound of the competitive ratio of
Ω(ZK) to minimize the total latency, and all the randomized
have a lower bound of the competitive ratio of Ω(Z logK).

Proof: We define two kinds of request groups, pure and
bursty requests, similar to [17]. A pure request for fi consists
of Z + 1 time slots, where the first slot requests fi, and the
following Z slots do not request any file. A bursty request for
fi consists of 2Z slots, where the first Z slots request file fi,
and the next Z slots do not request any file. If a pure or bursty
request is hit, there will be no latency accrued. If a pure request
is missed, the latency caused is Z; and, if a bursty request is
missed, the latency caused is at least Z(Z+1)

2 . Let rpi and rbi
be pure and bursty request for fi, respectively. Assume a total
of K + 1 different files will be requested.

Deterministic Algorithm. Let A be a deterministic online
algorithm for problem P. Without loss of generality, we assume
that files f1, . . ., fK are stored in the cache initially. First, the
constructor requests rpK+1. Since the cache size is K, there is at
least one file out of the cache whether bypassing is allowed or
not. Then repeat bursty requests for K times. The j-th bursty
request is rbij , where fij is the file not in the cache of A
just before j-th bursty request. Thus, each bursty request is
missed. For each bursty request, the latency caused by it is at
least Z(Z+1)

2 . So the total latency of A is Z +K Z(Z+1)
2 .

By contrast, the optimal offline algorithm always keeps the
files that will be requested in the following K bursty requests
in cache after rpK+1, which causes these K bursty requests all
hit. So the latency of optimal is only Z caused by rpK+1.

Thus, for deterministic algorithms, the lower bound of file
caching with delayed hits is Ω(ZK).

Randomized Algorithm. Let A be a randomized online
algorithm for problem P. When we construct the request
sequence σA we can maintain a vector p = (p1, p2, . . ., pK+1)

of probabilities, where pi is the probability that file fi is not
in the cache. Since there is only one file not in the cache, we
have the following equation:

∑
i pi = 1. Note that this vector

of probabilities is valid whether bypassing is allowed or not.
Similar to the marking algorithm, the constructor also

maintains whether each file is marked, and divides the request
sequence into several consecutive phases based on these mark-
ers. A file is marked when it was required in the current phase.
When the number of marked files reaches K+1, a new phase
starts and all files except the file just requested are set to
unmarked. In general, each phase contains requests for exactly
K different files and starts with a request requiring a file not
required in the last phase. Each phase then is divided into K
subphases, where each subphase consists of several requests
for marked files and ends with an unmarked file.

The sequence constructor can generate a sequence such
that the expected latency of each phase to A is at least
Z + Z(Z+1)

2 HK , and the latency to the optimal is Z.
Without loss of generality, we assume that files f1, . . ., fK

are stored in the cache at the beginning of this phase. The
first request in this phase is rpK+1 and we assume this pure
request does not affect files’ markers. Let u be the number
of unmarked files. According to the definition of subphase,
u is different at the beginning of each subphase in a phase.
Besides, let M be the set of marked files. And we define:
P =

∑
fi∈M pi. For each subphase, we prove that its expected

latency is at least Z(Z+1)
2u as follows:

• If P = 0, there must be an unmarked file fi with pi ≥
1/u. Let this subphase contain a single request to rbi .
The probability that rbi misses is at least 1/u and the
latency that will be caused if rbi misses is Z(Z+1)

2 . So
the expected latency of this request is at least Z(Z+1)

2u .
• If P > 0, then continuously require rbi until the total

expected latency of this subphase exceeding Z(Z+1)
2u ,

where fi ∈ M and pi > 0. This works because this
subphase can only end with a request of an unmarked
file, while fi is a marked file. No matter how many rbi
we require, these bursty requests always happen in the
current subphase.

Finally, we accumulate the total latency of all subphases in
this phase. Naturally, u takes all the integers between 1 and
K, thus, the total latency of A in this phase is

Z +
∑

1≤u≤K

Z(Z + 1)

2u
= Z +

Z(Z + 1)

2
HK . (11)

By contrast, as each phase contains requests for exactly K
different files, the optimal offline algorithm can always keep
these K files in the cache, which causes the total latency of
optimal is only Z caused by rpK+1.

Thus, for randomized algorithms, the lower bound of file
caching with delayed hits is Ω(Z logK). �

III. ONLINE ALGORITHM

In this section, we first propose a parameter to measure
the total latency caused by a file’s miss, called estimated
weight, to address the potential impact of the fetching pro-
cess (Sec. III-A). Then, we present our algorithm CaLa

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on March 25,2025 at 09:54:52 UTC from IEEE Xplore.  Restrictions apply. 



TAN et al.: ASYMPTOTICALLY TIGHT APPROXIMATION FOR ONLINE FILE CACHING 5

Fig. 3. The estimated aggregate delay [7] vs. real aggregate delay calculated
by Eqn. 12.

(Algorithm III-B) in detail in Sec. III-B. We also analyze
the performance of CaLa in Sec. III-C, and prove that the
deterministic and the randomized version of CaLa is O(ZK)-
competitive and O(Z logK)-competitive, respectively.

A. Estimated Weight

Aggregate Delay-Based Weight. The central challenge of
this problem is how to deal with delayed hits. In the design
of MAD [7], it uses the aggregate delay to capture the total
latency caused by a file’s miss:

AggDelay(f, T ) = zf +
∑

1≤τ≤zf−1

(zf − τ)η(f, T + τ),

(12)

where zf is the fetching latency of file f, η(f, T+τ) = 1 if f is
requested at time T + τ ; else, η(f, T + τ) = 0. The aggregate
delay of file f cannot be directly calculated in practice since it
requires the future information of the next zf time slots. MAD
uses the average aggregate delay(AAD) of all the past requests
for f to estimate the aggregate delay of the next request for f.

Conservative Upper-Bound Weighting. However, this esti-
mation is not always accurate hence the performance of MAD
is not guaranteed. We show the gap between the estimated
value and the real aggregate delay in Fig. 3. It shows that the
estimated aggregate delay deviates from the real value.

To avoid the impact of misestimation, we use the upper
bound of the total latency caused by the file’s miss, i.e., z2i ,
to estimate the actual latency caused by this miss. As we will
prove later, this estimation could preserve the competitive ratio
of the internal algorithm within O(Z)× extra cost.

Combined Weighting Approach. Although using the upper
bound to estimate the total latency of a miss yields algorithms
with a performance guarantee, the actual performance of this
method might be poor since it may give too much weight to
some infrequently requested files. In general, the method of
predicting the actual aggregate delay is radical and the method
of using the upper bound is conservative. To get a trade-off
between these two kinds of methods, CaLaintroduces a hybrid
weight function to represent the weight of each file:

Wf (T ) = (1− γ) AggDelay(f, T ) + γz2f , (13)

where parameter γ is called conservative parameter and is a
tuning parameter that balances:

• Aggressive estimation (γ = 0), which relies on past
observed delays.

• Conservative estimation (γ = 1), which assumes worst-
case latency.

B. CaLa

The core part of CaLa is quite simple, which imitates the
existing general file caching algorithm A while constantly
updating the weight of each requested file. By this means,
CaLa can eliminate the impact of delayed hits while retaining
the character of the original algorithm.

Algorithm 1 EstimatedWeight

First, we introduce the algorithm to update estimated
weights (Algorithm 1). This method mainly adopted Algo-
rithm 1 in [7]. When a new request for f arrives, if f is not
in the cache then a new fetching period starts (Line 3 to Line
5). If the status of f is OCCUPY, it means that f is already in
a fetching period, then we will accumulate the latency of this
request to this fetching (Line 7). Then the aggregate delay of
f is updated (Line 8) and the estimated weight of f can also
be calculated (Line 9).

The details of CaLa are described in Algorithm 2. Initially,
the cache of both CaLa and A are initialized (Line 2). When
a new request for file f arrives, calculate its weight Wf (T )
by calling Algorithm 1 and send this request to A (Line 12
to Line 13). If A chooses to evict files Fevict in the cache to
make room for file f, then CaLa will conduct the decision by
evicting the files immediately (Line 14 to Line 17) and storing
the new file f (Line 18 to Line 20). If A chooses to bypass
this request, then CaLa also bypasses it (Line 25). When a
file finishes its fetching, we serve all the buffered requests
together (Line 6 to Line 10).

We use a modified version of Landlord, i.e., Landlord
with bypassing (LLB) [18], as the kernel of CaLa. Landlord
[10] is an O(K)-competitive online algorithm for the general
file caching problem. It maintains a credit for each file to
determine whether it should be evicted. Similar to Landlord,
LLB also maintains a non-negative credit for each file. When
a request for file f arrives, LLB will first set the credit of f as
wf , where wf is the fetch cost of f. In the design of CaLa,
we set wf = Wf (T ) (Line 13 in Algorithm 2). Let G be a set
of files consisting of all files in the cache and f. Then for all
the files g ∈ G, decrease their credit by ∆ times their size and
delete zero-credit files in G, where ∆ is the minimum value

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on March 25,2025 at 09:54:52 UTC from IEEE Xplore.  Restrictions apply. 



6 IEEE TRANSACTIONS ON NETWORKING

Algorithm 2 CaLa

to zero the credit of a file, until the sum of files in G is no
larger than K. If f remains in G in the end, then fetch f to the
cache, otherwise, bypass the request for f.

C. Analysis

To facilitate the proof, we define the following notations.
Let ALG(zi) and OPT(zi) be respectively the total latency
incurred by CaLa and offline optimal solution in the model
of general file caching with delayed hits and bypassing if the
latency to fetch fi or bypass request for fi is zi. Let A(zi) and
OPT′(zi) be respectively the total cost of online algorithm
A and offline optimal solution of general file caching with
bypassing, where A is c-competitive and zi is the cost to fetch
or bypass fi. Similarly, A(z2i ) and OPT′(z2i ) are the total cost
when the cost to fetch or bypass fi is z2i . Clearly, we have
A(z2i ) ≤ c ·OPT′(z2i ).

Lemma 1: ALG(zi) ≤ A(z2i ).
Proof: We define the fetching group of fi as all requests to

fi from a fetching of fi to the next fetching or bypassing of
fi. Clearly, each fetching group of fi only contains a single
fetching of fi followed by zero or more delayed hits of fi. For
special cases of ALG, if fi is evicted during fetching, let all
requests to fi in the period from starting fetching to evicting
be a fetching group. Since each fetching group of fi at most

includes zi requests of fi and the latency of each request to
fi is at most zi, the fetching latency of each fetching group
of fi of ALG(zi) is no larger than z2i . On the other hand,
the fetching latency of each fetching group of fi of A(z2i ) is
exactly z2i . For each bypassing of fi in A, the corresponding
latency of fi in CaLa is no larger than zi and the cost in A is
z2i . By definition, each request inA is either in a fetching group
or a bypassing. Since CaLa follows the operations of A, the
fetching group of ALG(zi) is exactly the same as A(z2i ). Thus,
ALG(zi) ≤ A(z2i ). �

Fact 1: For general file caching with bypassing, let I1 and
I2 be two input sequences that request the same files, where
the cost to fetch files in I1 are (w1, w2, . . ., wn) and the cost
to fetch files in I2 are (βw1, βw2, . . ., βwn). Then we have
OPT′(I2) = βOPT′(I1).

Fact 2: For general file caching with bypassing, let I1 and
I2 be two input sequences that request the same files, where
the cost for files in I1 are (w1, w2, . . ., wn) and the cost for
files in I2 are (w′1, w

′
2, . . ., w

′
n) and assume w1 ≤ w′1, w2 ≤

w′2, . . ., wn ≤ w′n. Then we have OPT′(I1) ≤ OPT′(I2).

By using Fact 1 and Fact 2, we have the following lemma.
Lemma 2: OPT′(z2i ) ≤ Z ·OPT′(zi).
Then, we get the connection between the optimal of file

caching and the optimal of problem P by the following lemma.
Lemma 3: OPT′(zi) ≤ OPT(zi).
Proof: We define the n-th fetching window of fi as the time

interval during which fi is being fetched from the remote data
center for the n-th time, which begins from the time when fi
is requested and not found in the cache for the n-th time,
denoted as tb(i, n), and ends at min{tf (i, n), te(i, n)}. Here,
tf (i, n) = tb(i, n) + zi and te(i, n) is the time when fi is
evicted from cache for the n-th time. We assume the j-th
request of fi appears in the Ni,j-th fetching window of fi.
For conciseness, let tfi,j represent tf (i,Ni,j) and tei,j represent
te(i,Ni,j). We set B as an algorithm that meets the following
conditions: Firstly, B and OPT have the same fetching groups,
which means they have the same main structures including
content admission and eviction decision. Secondly, there is
only one difference between B and OPT, which is the way
how they compute the total latency. For the j-th request of
file fi, we assume the time slot when this request arrives
is Ti,j . Besides, we define the increase of the total latency
caused by the j-th request of file fi in algorithm OPT be
OPTi,j and define the increase of the total latency caused
by this request in algorithm B be Bi,j . If the j-th request of
fi hits, Bi,j = OPTi,j = 0. If the j-th request of fi missed,
Bi,j = OPTi,j = zi. If the j-th request of fi delayed hits, Bi,j
is always zero. But OPTi,j is zi when tei,j < tfi,j which means
it is an EDF case and OPTi,j is tfi,j − Ti,j when tei,j > tfi,j
which means this fetching completes normally. Thus, Bi,j is
always less than or equal to OPTi,j , for any i, j. We define
B(zi) as the total latency of algorithm B. According to the
above definition of B, B(zi) ≤ OPT(zi). Besides, we find B
computes the total latency in the same way as algorithms in
the model without delayed hits. The model with delayed hits
and the model without delayed hits only differ in the method
of how they compute the total latency. So the solution of B is

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on March 25,2025 at 09:54:52 UTC from IEEE Xplore.  Restrictions apply. 



TAN et al.: ASYMPTOTICALLY TIGHT APPROXIMATION FOR ONLINE FILE CACHING 7

a feasible solution in the model without delayed hits. Then, as
OPT′(zi) is the total latency of the offline optimal solution of
general file caching with bypassing and without delayed hits,
OPT′(zi) ≤ B(zi). Thus, OPT′(zi) ≤ OPT(zi). �

By combining Lemma 1, Lemma 2 and Lemma 3 together,
we have the following theorem.

Theorem 2: If there is an online file caching algo-
rithm A with bypassing that is c-competitive, CaLa is
O(Zc)-competitive for the online file caching problem with
heterogeneous fetching latency and bypassing by setting
γ = 1.

It should be noted that by using a similar method to prove,
we can get the same result in the case without bypassing. Since
there are deterministic O(K)-competitive online algorithm
and randomized O(logK)-competitive online algorithm for
general file caching [18], we have the following corollary.

Corollary 1: By setting γ = 1, the deterministic version of
CaLa is O(ZK)-competitive, and the randomized version of
CaLa is O(Z logK)-competitive.

D. CaLa+

CaLa+improves weight estimation by incorporating EDF.
When a request for file f is a miss, delayed hits will be intro-
duced potentially during f ’s fetching process. Additionally, if
the cache is full at the time of this request, the latency of a file
f ′ evicted to make space for f will be increased to zf ′ , which
is also the consequence of this miss. To address the above,
provided that this file begins fetching at Ts(f, T ), we define
the EDF cost as:

CEDF(f, T ) = zfN(f, T )−ADR(f, T ), (14)

where N(f, T ) is the number of requests for f during this
fetching, ADR(f, T ) is the aggregate delay of f during the
period from Ts(f, T ) to T, given by:

ADR(f, T ) =
∑

0≤τ≤T−Ts(f,T )

(zf−τ)η(f, Ts(f, T )+τ). (15)

Thus, CaLa+modifies the weight formula during the fetch-
ing process to:

Wf (T ) = (1− γ) AggDelay(f, T ) + γz2f + αCEDF(f, T ),
(16)

where α is a tuning parameter to control the impact of EDF.
Modified Weighting Algorithm. According to Eqn. 16 and

Eqn. 14, we have a new algorithm to update the estimated
weights (Algorithm 3 as follows. On the basis of Algorithm 1,
Algorithm 3 incorporates CEDF into the weight calculation. If
f is not in the cache when a new request for f arrives, we
start a new fetching period just like Algorithm 1 (Line 3 to
Line 4). Meanwhile, we initialize the number of requests for f
in this fetching period to 1 and set its aggregate latency in this
fetching period as zf (Line 5 to Line 6). If the status of f is
OCCUPY, which means f is already in a fetching period, we
accumulate the latency of the delayed hit to this fetching and
increase the request count for this period (Line 10 to Line 11).

Specifically, Algorithm 3 changes the way we calculate
historical average AggDelay at time T, which is called AAD in

Algorithm 3 EstimatedWeight+

Eqn. 17. Instead of dividing accumulative delay by the number
of fetches, the new method updates AAD using the following
approach (Line 7 to Line 8, Line 12):

AADf
n = AADf

n−1 +
1

n
(ADR(f, T )−AADf

n−1), (17)

where n is the number of times how much file f is fetched.
Then, if the status of file f is IN, its estimated weight will

be calculated using Eqn. 13 (Line 14); otherwise, its estimated
weight is calculated according to Eqn. 16 (Line 17).

Finally, in Algorithm 2, we change the function which
estimates weights of files from EstimatedWeight(f, T ) to
EstimatedWeight+ (f, T ) (in Line 12). This updated algo-
rithm is named CaLa+.

E. Summary of Weighting Methods

Overall, the weight of a file quantifies its importance by
estimating the impact of its miss on total latency, serving
as a priority metric for decisions on fetching, evicting, or
bypassing. By using weights, we can leverage existing weight-
based algorithms and integrate diverse methods.

Table II summarizes the weighting approaches discussed
above. We use AggDelay and CEDF to quantify the effects
of delayed hits and EDFs, improving the accuracy of latency
loss estimation due to file misses.

IV. EVALUATION

We evaluate the performance of CaLa on two datasets: (1)
the production trace from Google [16], (2) the system bench-
mark of YCSB workloads from Yahoo [19], which is used
widely in previous works (e.g., [4], [20], [21]). We compare

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on March 25,2025 at 09:54:52 UTC from IEEE Xplore.  Restrictions apply. 



8 IEEE TRANSACTIONS ON NETWORKING

TABLE II
COMPARISON OF DIFFERENT WEIGHTING METHODS

CaLa and CaLa+ with several state-of-the-art methods, i.e.,
LRU [2], LRU-MAD [7], Landlord [10], and Landlord with
bypassing [18]. The details of experiment results are shown
in Sec. IV-C and we highlight our key findings as follows.
• Compared to LRU-MAD, the state-of-the-art algorithm

deals with delayed hits, CaLa can reduce latency by
up to 8.48% without bypassing. This reduction will be
increased to 26.00% if bypassing is allowed. Additionally,
the latency improvement from CaLa to CaLa+ is more
than 5%.

• CaLa achieve a similar hit ratio to LRU-MAD, and
evicts more large files to make space for more frequent
and high-latency files. Furthermore, CaLa with bypass-
ing achieves a higher hit ratio by bypassing infrequent
requests.

• If the cache size is relatively small (e.g., sum of 0.1%
to 0.5% of the active files), when bypassing is allowed,
CaLa and CaLa+ outperform other algorithms signifi-
cantly.

A. Methodology

We set the cache size in a way similar to [7], where the
cache size is the sum of the sizes of the most active files. The
default cache size is the sum of the sizes of the top 1% of
active files. For CaLa, the default value of γ is set to 0.1. For
CaLa+, the default value of α is set to 10.

Workloads. There are 4.4M and 2.8M requests in the
Google’s production trace and the YCSB benchmark, respec-
tively. Note that the request sequence patterns of these two
traces are quite different. The requests in Google’s trace for
the same file usually arrive continuously, while the requests in
the YCSB benchmark arrive individually. To express this more
clearly, we define the request locality of a sequence, calculated
as the ratio of the number of requests that are followed by
the ones requiring the same file among the number of total
requests. The request locality of the Google trace and the
YCSB benchmark are 0.7058 and 0.0025, respectively. This
is the main reason why CaLaand CaLa+ perform better on
the Google trace than the YCSB benchmark. For Google’s
production trace, we use “RAM Used” as the size of the file.
The size of the file in the YCSB benchmark is generated with
exponential distribution, and its mean value is set to be close
to Google’s trace. By default, we set the average inter-request
time to 100µs, i.e., 10K requests arrive in a second. For
reference, the peak number of requests per minute during a
flash crowd is about 35K [22]. The average default latency
of files is set to 100ms (i.e., the average value of zf for files
is 1000), which is the approximate latency to fetch files from

remote data center [6]. Since both traces lack information of
the file’s fetching latency, we randomly generate a latency
uniformly distributed within (0, Zupper) for each file, where
Zupper is 2× the average fetching latency.

Metrics. The metrics used to evaluate the performance
of algorithms is the total latency incurred by all requests,
including the latency caused by misses, delayed hits or bypass-
ing. Furthermore, we use the latency improvement relative to
LRU to measure the performance of the algorithm when the
parameters change, which can be calculated by

Latency Improvement of A =
Latency(LRU)− Latency(A)

Latency(LRU)
.

A higher latency improvement means better performance.

B. Baseline Algorithms

We compare the performance of our proposed algorithms
CaLa (γ = 1) without bypassing, CaLa without bypassing,
CaLa with bypassing, CaLa+ without bypassing and CaLa+
with bypassing with the following baselines. Our proposed
algorithms without bypassing use Landlord as their kernel,
while algorithms with bypassing use LLB.

LRU [2]. Least Recently Used is the most classic algorithm
in the caching problem, which will evict the file that has not
been used for the longest time. LRU is O(K)-competitive
for the paging problem. Due to the locality of requests, LRU
generally performs well in a production environment.

LRU-MAD [7]. LRU-MAD is the state-of-the-art caching
algorithm that deals with delayed hits by calculating each file’s
rank. The rank of a file is its aggregate delay divided by the
time since its last request and LRU-MAD will evict the file
with the lowest rank when the cache is out of space. Although
in the system model of [7] all the files have the same fetching
latency, LRU-MAD is aware of heterogeneous fetching latency
because of the calculation of aggregate delay.

Landlord [10]. Landlord is a O(K)-competitive algorithm
for online general file caching. The core of Landlord is to
maintain a credit for each file and evict all the zero-credit
files. Each file’s credit is set to its cost (i.e., fetching latency
in this paper) when it is requested. Credit for all files in the
cache will be decreased by a value proportional to the size of
the file.

Landlord with Bypassing [18]. To support bypassing,
Landlord with bypassing sets the credit of the new requested
file to its cost first. Then decrease all the credit of files in
the cache and the new requested file. Similar to Landlord, all
the zero-credit files will be evicted. If the credit of the new
requested file is decreased to zero, then bypass it.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on March 25,2025 at 09:54:52 UTC from IEEE Xplore.  Restrictions apply. 



TAN et al.: ASYMPTOTICALLY TIGHT APPROXIMATION FOR ONLINE FILE CACHING 9

Fig. 4. Overall performance.

C. Experiment Results

Overall Result. We first evaluate the overall performance
of CaLa (γ = 1) without bypassing, CaLa without bypassing
and with bypassing, CaLa+ without bypassing and with
bypassing and we compare them with LRU, LRU-MAD,
Landlord and Landlord with bypassing, where parameters are
set as default values. The experimental results are shown in
Fig. 4, where the total latency of each algorithm is normalized
so that the total latency of LRU is 1. Fig. 4(a) illustrates
the results without bypassing. In Google’s trace, the latency
improvements of CaLa to LRU, LRU-MAD and Landlord
are 36.18%, 8.48% and 26.53%, respectively. And the latency
improvement of CaLa+ to CaLa is 5.11%. For the results
in the YCSB benchmark, the latency improvements of CaLa
to LRU, LRU-MAD and Landlord are 10.06%, 4.77% and
3.15%, respectively. The latency improvement of CaLa+ to
CaLa is 3.42%. We show the result of latency improvement
of bypassing in Fig. 4(b). It shows that if bypassing is
allowed, compared with the situation without bypassing, CaLa
reduces 19.14% and 8.07% latency on Google’s trace and the
YCSB benchmark, respectively. Bypassing can improve the
performance of algorithms because it provides a mechanism
to keep the files with low quotes out of the cache, which
is similar to q-LRU and k-LRU [23]. We can see that the
latency improvement of CaLa+ with bypassing to CaLa with
bypassing is 5.21% on Google’s trace but it is not obvious
on the YCSB benchmark, because the requests of the YCSB
benchmark are not bursty. We also find the performance of
LRU-MAD is better than Landlord in Google’s trace, while
the opposite result is shown in the YCSB benchmark. This
phenomenon indicates aggregate delay captured burst requests
and failed to handle the sequence without locality, and CaLa
performs well in both cases.

Ingredient of Latency. To explore the factors affecting
performance, we analyze the ratios of hits, delayed hits,
misses and bypasses for each algorithm in Fig. 5. Firstly,
we find that the hit ratio generally determines an algorithm’s
performance. In the result from Google’s trace, LRU-MAD
has the highest hit ratio among algorithms without bypassing.
CaLa also gets a hit ratio close to LRU-MAD, but performs
better due to its tendency to evict larger files and allocate
more space for high-latency files. Allowing bypassing further
improves hit rates and performance. This phenomenon is more

Fig. 5. Ratio of hit, delayed hit, miss and bypassing.

Fig. 6. Distribution of size of evict files, where the size is normalized so that
the size of the smallest file is 1.

obvious in the YCSB benchmark, which has more requests
for infrequent files that cause inevitable misses. By bypassing
some requests, part of frequent files will not be evicted and
hence the hit ratio of Landlord with bypassing and CaLa
with bypassing are significantly increased. Besides, the hit
ratio of CaLa+ is close to CaLawhether with or without
bypassing.

Size of Evicted Files. We investigate the sizes of evicted
files of different algorithms in Fig. 6. The distributions of LRU
and LRU-MAD are roughly close, while Landlord and CaLa
are around close. Due to the limitation of space, we only plot
the difference between LRU-MAD and CaLa. For each size
value, we count the number of files with this size that are
evicted. The value on the y-axis represents the number of files
evicted by CaLa compared with LRU-MAD. It shows that

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on March 25,2025 at 09:54:52 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE TRANSACTIONS ON NETWORKING

Fig. 7. Distribution of the latency of requests.

Fig. 8. The latency caused by EDFs and the number of EDFs.

CaLa evicts more large files, making more space left for files
with high frequency and high latency.

Latency of Requests. We plot the distribution of latency
of requests in Fig. 7, including latency caused by bypassing,
misses and delayed hits, where the height of a point for a
specific latency represents the number of requests served at
this latency. In the Google’s trace, LRU has more high latency
requests, resulting in its overall poor performance. With the
help of aggregate delay, LRU-MAD is much better at reducing
the number of high-latency requests. However, in the YCSB
benchmark, the distribution of LRU-MAD is close to LRU,
which means aggregate delays are not that effective when the
requests are not bursty. Besides, we can observe that CaLa
can better avoid missing high latency files in both traces.

EDF Latency. Fig. 8 illustrates the differences in the latency
caused by EDFs among the algorithms, focusing on Google’s
trace since the latency improvement of CaLa+ compared to
CaLa is less obvious in the YCSB benchmark. In Fig. 8(a), the
total height of every bar represents the overall latency, and the
grey portion of every bar indicates the latency increase caused
by all EDFs of these algorithms, referred to as EDF latency.
We observe that CaLa+ has lower EDF latency than CaLa,
explaining its total latency improvement of 5.11%, despite a
less noticeable improvement in hit ratio. Specifically, Fig. 8(b)
shows that bypassing effectively reduces the number of EDFs.
Bypassing provides a new option when algorithms without
bypassing have to evict files during fetching to serve new
requests. Based on Figs. 8(a) and 8(a), we can conclude that
the average latency of every EDF in CaLa+ without bypassing
is less than CaLa without bypassing, indicating that CaLa+

Fig. 9. Impact of cache size.

Fig. 10. Impact of fetching latency.

can select files that incur less EDF latency to evict. This is
because CaLa+ considers the EDF cost of evicting this file
in its credit during fetching additionally, while CaLa only
considers potential aggregate delay in the future.

D. Sensitivity Study

Impact of Cache Size. To investigate the impact of cache
size, we change the cache size from 0.1% to 10% and
measured the latency improvement of the algorithms relative
to LRU, as shown in Fig. 9. First, when the cache size
is small (e.g., sum of 0.1% to 0.5% of the active files),
CaLa with bypassing performs far beyond other algorithms.
This is because bypassing can avoid evicting some frequently
requested files and reduce misses and delayed hits. As the
cache size gradually increases, the performance of CaLa
approaches that of CaLa with bypassing. Notably, due to the
discreteness of files’ size in the trace, for different algorithms
the performance improvement brought by the additional cache
size does not occur simultaneously as the cache size increases,
which causes the fluctuations in performance curves. Finally,
when the cache size is large enough, almost all frequent files
can be cached and the performance of all algorithms tends to
be the same.

Impact of Fetching Latency. We present the impact of
fetching latency in Fig. 10, where the fetching latency changes
from 10 to 100000 time slots. The performance of LRU-MAD,
CaLa and CaLa+ starts increasing when the fetching latency
becomes higher since their awareness of latency and delayed
hits. In the YCSB benchmark, these algorithms perform sim-

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on March 25,2025 at 09:54:52 UTC from IEEE Xplore.  Restrictions apply. 



TAN et al.: ASYMPTOTICALLY TIGHT APPROXIMATION FOR ONLINE FILE CACHING 11

Fig. 11. Impact of γ.

Fig. 12. Impact of α (CaLa+ Relative to CaLa).

ilarly to the algorithms without delayed hits, as there are
few requests with delayed hits, especially when the latency is
relatively small. When the average fetching latency becomes
very large, in both traces these algorithms tend to have similar
performance, since almost all the requests result in misses or
delayed hits. The fluctuations in Fig. 10 reflect the different
sensitivity of various algorithms to the fetching latency.

Impact of γ. As shown in Fig. 11, for the Google’s trace,
the best performance is achieved when γ = 0.1, which shows
that it is better to use a value of γ closer to the aggregate
delay for burst requests. In the YCSB benchmark, the best
performance can be obtained by setting γ = 0. However,
CaLa with bypassing and CaLa+ with bypassing perform
extremely badly when γ = 0 in the Google’s trace, which
indicates the misestimation of aggregate delay will seriously
affects the results of bypassing, especially for burst requests.

Impact of α. Fig. 12 illustrates the impact of α on
CaLa+latency. Fig. 12(a) and 12(c) show overall latency
changes, while Fig. 12(b) and 12(d) provide insights into
the underlying causes. The results show that CaLa+achieves
optimal performance at α = 10, whether with bypassing
or without bypassing. As α changes from 1 to 100, we
observe that the latency improvement of CaLa+relative to
CaLainitially increases and then gradually declines, whether
with bypassing or without bypassing. To explain this phe-
nomenon, we analyze the changes in EDF latency and hit

ratio of CaLa+ without bypassing and CaLa+ with bypassing
under different α values (respectively relative to CaLa without
bypassing and CaLa with bypassing). The results reveal a
trade-off between reducing the EDF latency and maintaining
the hit ratio, explaining the observed performance trend.

V. RELATED WORKS

Theoretical Results of Caching. The first systematic study
of the performance analysis of caching algorithm is presented
by Sleator and Tarjan [2], which shows that LRU and FIFO are

k
k−h+1 -competitive and no deterministic online algorithm can
achieve a better competitive ratio. Here, k and h are the cache
size of the online algorithm and offline optimal, respectively.
Fiat et al. proposed the first online paging algorithm Marking
[8] with 2Hk-competitive and showed no randomized online
algorithm could be better than Hk-competitive. For the caching
problem with nonuniform file size, Irani [24] proposed a gen-
eral method to transfer this problem to the uniform setting and
gave an online algorithm with O(log2 k)-competitive when the
fetch cost of a file equals 1 or its size. The tight deterministic
k-competitive algorithm for weighted caching came from the
results of the k-server problem on trees due to Chrobak et al.
[25]. Bansal et al. [26] designed the first randomized O(log
k)-competitive online algorithm for this problem. Jiang et al.
[27] studied the weighted paging problem and gave a lower
bound of Ω(log k) in the PRP model. Then they proposed
a stronger model called SPRP and gave an algorithm with
2-competitive. For general caching with nonuniform file size
and fetch cost, Irani [28] proved the offline version is already
NP-hard. Bar-Noy et al. [29] gave a 4-approximate algorithm
for the offline version and Adamaszek et al. [30] showed a
tight online algorithm with O(log k)-competitive. Tan et al.
[4] studied the caching variant in edge computing, where the
system contains multiple caches and requests can be relayed
to other caches, and gave an O(log k)-competitive online
algorithm. Lykouris and Vassilvitskii [31] first studied the
online paging problem with machine learning advice and gave
an algorithm with O(1 + min(

√
η/OPT , log k)), where η is

the total absolute loss and OPT is the cost of offline optimal.
Based on this, Rohatgi [32] improved the theoretical result
to O(1 + min((η/OPT )/k, 1) log k) and provided a lower
bound of Ω(log min((η/OPT )/(k log k), k)). Los et al. [33]
provided an O(l)-competitive deterministic and an O(log l)-
competitive randomized algorithm for a semi-online model of
weighted paging, where l is the number of distinct weight
classes.

Caching Algorithms in CDNs. Some works explore valu-
able features to optimize cache performance based on the
actual production environment for CDNs. Hu et al. [34] used
data locality to minimize the average response time of key-
value caches. Beckmann et al. [15] proposed the algorithm
LHD to predict the hit density of each object to filter objects
that have a small contribution to the cache hit rate. Berger
et al. [35] proposed AdaptSize, an adaptive, size-aware cache
admission policy for hot object cache in CDN. Berg et al. [36]
showed CacheLib, a general-purpose caching engine, extracts
a core set of common requirements and functionality from
otherwise disjoint caching systems. Ye et al. [37] proposed a

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on March 25,2025 at 09:54:52 UTC from IEEE Xplore.  Restrictions apply. 



12 IEEE TRANSACTIONS ON NETWORKING

TABLE III
THEORETICAL RESULTS OF CACHING PROBLEMS

learning framework to learn the joint cache size scaling and
strategy adaptation policy for Elastic CDN. Song et al. [38]
proposed HALP that achieves low CPU overhead and robust
byte miss ratio improvement by augmenting a heuristic policy
with machine learning. Chen et al. [39] developed Darwin,
a learning-based CDN caching approach, to flexibly optimize
different caching objectives. Zong et al. [40] proposed Cocktail
Edge Caching, which employed an ensemble of constituent
caching policies and adaptively selected the best-performing
approach to control the cache. Song et al. [41] proposed
LRB to mimic the relaxed Belady’s MIN algorithm by using
Gradient Boosting Machines [42]. Akhtar et al. [43] described
AviC that leverages properties of video delivery to design
the eviction policy in CDN. Zhou et al. [44] introduced
Bounded Linear Probing (BLP) balancing hit rate and lookup
latency for network appliances. Yang et al. [45] presented
C2DN to eliminate the miss ratio spikes caused by server
unavailabilities. Garetto et al. [46] provided a first compre-
hensive analysis of similarity caching in different settings.
Elsayed et al. [47] proposed a machine learning approach to
estimate the optimal TTL values for large systems. Jin et al.
[48] presented NetCache, a key-value store architecture that
balances the load across storage nodes.

Caching Algorithms considering delayed hits. Atre et al.
[7] studied the caching problem with delayed hits and pro-
posed a heuristic to estimate the aggregate latency caused
by a cache miss. Paper [17] introduced the lower bound of
caching with delayed hits for deterministic solutions. Yan and
Li [49] proposed a timer-based model considering delayed hits
and a lightweight latency-aware caching algorithm named LA-
Cache. Besides, the fetching delay of a caching file has also
been considered on Time-to-Live (TTL) caches, known as non-
zero download delay (non-ZDD) models [50], [51], [52], [53].

In this work, we first extend the lower bound to ran-
domized algorithms, then propose a general framework to
transform an existing competitive algorithm for the general file

caching problem to address delayed hits with a performance
guarantee. We summarize the related theoretical results in
Table III.

VI. DISCUSSION

More Accurate Estimated Weight. For the estimated
weight, we only use a rough method, by setting a parameter γ,
to linearly combine the aggregate delay and its upper bound.
For various input sequences, the optimal value of γ might be
completely different. There could be several promising direc-
tions to more accurately estimate the total latency of a request
miss and find a better adaptive way to set the estimated weight.
For example, the way to estimate aggregate delay should be
highly correlated with time. Moreover, the combination could
be more complex, e.g., with more estimators but not just a
simple linear combining. For more complicated applications,
learning-based methods such as multi-armed bandits and deep
reinforcement learning might work well. We leave this esti-
mation improvement as our future work.

Portraying the Fetching Latency. In this work, we prove
that CaLa can transform an existing file caching algorithm
to handle delayed hits with extra O(Z)× cost. This trans-
formation is proven to be asymptotically tight, since the
lower bounds of file caching with delayed hits are Ω(ZK)
and Ω(Z logK) for deterministic algorithm and randomized
algorithm, respectively. But the competitive ratio of CaLa
and the lower bounds may still not reflect the performance
in practice, since the parameter chosen to portray the fetching
latency, i.e., Z, is just a rough estimate of the overall data.
For example, when the latency of all files increases to Z, the
theoretical performance bound of CaLa remains the same,
while the actual total latency of CaLa may substantially
increase. There might be other potential parameters that can
better describe the request sequence.

Relating to TTL Caches. TTL caches set an independent
expiration time for each individual content, such that we can
decouple the eviction mechanisms of different files. Thus,
TTL-based cache strategies typically have low time complexity
and are simple to deploy. But few works about TTL caches
provide competitive analysis. We believe that our method of
estimating the weights of files and doing competitive analysis
can also provide some insights for TTL caching, and applying
the algorithm principles of this work to TTL caching to
optimize non-ZDD performance is an interesting future work.

VII. CONCLUSION

In this paper, we study the general online file caching
problem with delayed hits and bypassing, where the objective
is to minimize the total latency of all the requests. We first
prove lower bound Ω(ZK) and Ω(Z logK) for deterministic
algorithms and randomized algorithms, respectively. Then we
propose a general framework, i.e., CaLa, which estimates
the latency of each request and then imitates an existing
file caching algorithm to get guaranteed performance. We
prove that the deterministic version and randomized version
of CaLa have a competitive ratio of O(ZK) and O(Z logK),
respectively. Besides, we propose CaLa+ which takes evicting
during fetching into account when estimating the weights of

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on March 25,2025 at 09:54:52 UTC from IEEE Xplore.  Restrictions apply. 



TAN et al.: ASYMPTOTICALLY TIGHT APPROXIMATION FOR ONLINE FILE CACHING 13

files. We evaluate CaLa based on Google’s trace and the
YCSB benchmark. The experiment results show that compared
with LRU-MAD, CaLa can reduce the latency by up to
8.48% without bypassing. Furthermore, this reduction will be
increased to 26.00% if bypassing is allowed. And CaLa+ can
further reduce latency by about 5% compared to CaLa.

REFERENCES

[1] C. Zhang, H. Tan, G. Li, Z. Han, S. H.-C. Jiang, and X.-Y. Li,
“Online file caching in latency-sensitive systems with delayed hits and
bypassing,” in Proc. IEEE Conf. Comput. Commun. (IEEE INFOCOM),
May 2022, pp. 1059–1068.

[2] D. D. Sleator and R. E. Tarjan, “Amortized efficiency of list update and
paging rules,” Commun. ACM, vol. 28, no. 2, pp. 202–208, Feb. 1985.

[3] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl,
“Globally distributed content delivery,” IEEE Internet Comput., vol. 6,
no. 5, pp. 50–58, Sep. 2002.

[4] H. Tan, S. H.-C. Jiang, Z. Han, L. Liu, K. Han, and Q. Zhao, “Camul:
Online caching on multiple caches with relaying and bypassing,” in
Proc. IEEE Conf. Comput. Commun. (IEEE INFOCOM), Apr. 2019,
pp. 244–252.

[5] R. Krishnan et al., “Moving beyond end-to-end path information to
optimize CDN performance,” in Proc. 9th ACM SIGCOMM Conf.
Internet Meas., Nov. 2009, pp. 190–201.

[6] X. Fan, E. Katz-Bassett, and J. Heidemann, “Assessing affinity between
users and CDN sites,” in Proc. Int. Workshop Traffic Monitor. Anal.
Cham, Switzerland: Springer, Jan. 2015, pp. 95–110.

[7] N. Atre, J. Sherry, W. Wang, and D. S. Berger, “Caching with delayed
hits,” in Proc. Annu. Conf. ACM Special Interest Group Data Com-
mun. Appl., Technol., Archit., Protocols Comput. Commun., Jul. 2020,
pp. 495–513.

[8] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and
N. E. Young, “Competitive paging algorithms,” J. Algorithms, vol. 12,
no. 4, pp. 685–699, Dec. 1991.

[9] D. Achlioptas, M. Chrobak, and J. Noga, “Competitive analysis of
randomized paging algorithms,” Theor. Comput. Sci., vol. 234, nos. 1–2,
pp. 203–218, Mar. 2000.

[10] N. E. Young, “On-line file caching,” Algorithmica, vol. 33, no. 3,
pp. 371–383, Jan. 2002.

[11] N. Bansal, N. Buchbinder, and J. Naor, “Randomized competitive
algorithms for generalized caching,” SIAM J. Comput., vol. 41, no. 2,
pp. 391–414, Jan. 2012.

[12] D. Genbrugge and L. Eeckhout, “Memory data flow modeling in
statistical simulation for the efficient exploration of microprocessor
design spaces,” IEEE Trans. Comput., vol. 57, no. 1, pp. 41–54, Jan.
2008.

[13] M. V. Wilkes, “Slave memories and dynamic storage allocation,” IEEE
Trans. Electron. Comput., vol. EC-14, no. 2, pp. 270–271, Apr. 1965.

[14] N. Megiddo and D. S. Modha, “ARC: A self-tuning, low overhead
replacement cache,” in Proc. USENI FAST, Mar. 2003, pp. 115–130.

[15] N. Beckmann, H. Chen, and A. Cidon, “LHD: Improving cache hit
rate by maximizing hit density,” in Proc. USENIX NSDI, Jan. 2018,
pp. 389–403.

[16] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces:
Format + schemam,” Google, Mountain View, CA, USA, Tech. Rep.,
Nov. 2011. [Online]. Available: https://github.com/google/cluster-data

[17] P. Manohar and J. Williams, “Lower bounds for caching with delayed
hits,” 2020, arXiv:2006.00376.

[18] L. Epstein, C. Imreh, A. Levin, and J. Nagy-György, “Online file caching
with rejection penalties,” Algorithmica, vol. 71, no. 2, pp. 279–306, Feb.
2015.

[19] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proc. 1st ACM
Symp. Cloud Comput., Jun. 2010, pp. 143–154.

[20] Y. Chen, Y. Lu, F. Yang, Q. Wang, Y. Wang, and J. Shu, “FlatStore: An
efficient log-structured key-value storage engine for persistent memory,”
in Proc. 25th Int. Conf. Architectural Support Program. Lang. Operating
Syst., Mar. 2020, pp. 1077–1091.

[21] T. Yao et al., “MatrixKV: Reducing write stalls and write amplification
in LSM-tree based KV stores with matrix container in NVM,” in Proc.
USENIX ATC, Jan. 2020, pp. 17–31.

[22] P. Wendell and M. J. Freedman, “Going viral: Flash crowds in an open
CDN,” in Proc. ACM SIGCOMM Conf. Internet Meas. Conf., Nov. 2011,
pp. 549–558.

[23] V. Martina, M. Garetto, and E. Leonardi, “A unified approach to the
performance analysis of caching systems,” in Proc. IEEE Conf. Comput.
Commun. (IEEE INFOCOM), Apr. 2014, pp. 2040–2048.

[24] S. Irani, “Page replacement with multi-size pages and applications to
web caching,” in Proc. 29th Annu. ACM Symp. Theory Comput. (STOC),
1997, pp. 701–710.

[25] M. Chrobak, H. Karloof, T. Payne, and S. Vishwnathan, “New ressults
on server problems,” SIAM J. Discrete Math., vol. 4, no. 2, pp. 172–181,
May 1991.

[26] N. Bansal, N. Buchbinder, and J. Naor, “A primal-dual randomized algo-
rithm for weighted paging,” J. ACM (JACM), vol. 59, no. 4, pp. 1–24,
Aug. 2012.

[27] Z. Jiang, D. Panigrahi, and K. Sun, “Online algorithms for weighted
paging with predictions,” 2020, arXiv:2006.09509.

[28] S. Irani, “Page replacement with multi-size pages and applications to
web caching,” Algorithmica, vol. 33, no. 3, pp. 384–409, 2002.

[29] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and B. Schieber, “A
unified approach to approximating resource allocation and scheduling,”
J. ACM., vol. 48, pp. 1069–1090, Sep. 2001.

[30] A. Adamaszek, A. Czumaj, M. Englert, and H. Räcke, “An O(log k)-
competitive algorithm for generalized caching,” in Proc. ACM Trans.
Algorithms (TALG), Jan. 2012, vol. 15, no. 1, pp. 1–18.

[31] T. Lykouris and S. Vassilvitskii, “Competitive caching with machine
learned advice,” 2018, arXiv:1802.05399.

[32] D. Rohatgi, “Near-optimal bounds for online caching with machine
learned advice,” in Proc. SIAM SODA, Dec. 2019, pp. 1834–1845.

[33] D. Los, T. Sauerwald, and J. Sylvester, “Balanced allocations with
heterogeneous bins: The power of memory,” in Proc. SIAM SODA, Jan.
2023, pp. 4448–4477.

[34] X. Hu et al., “LAMA: Optimized locality-aware memory allocation for
key-value cache,” in Proc. USENIX ATC, Jul. 2015, pp. 57–69.

[35] D. S. Berger, R. K. Sitaraman, and M. Harchol-Balter, “Adaptsize:
Orchestrating the hot object memory cache in a content delivery
network,” in Proc. USENIX NSDI, Mar. 2017, pp. 483–498.

[36] B. Berg et al., “The CacheLib caching engine: Design and experiences
at scale,” in Proc. USENIX OSDI, Jan. 2020, pp. 753–768.

[37] J. Ye, Z. Li, Z. Wang, Z. Zheng, H. Hu, and W. Zhu, “Joint cache
size scaling and replacement adaptation for small content providers,”
in Proc. IEEE Conf. Comput. Commun. (IEEE INFOCOM), May 2021,
pp. 1–10.

[38] Z. Song et al., “HALP: Heuristic aided learned preference eviction policy
for Youtube content delivery network,” in Proc. USENIX NSDI, 2023,
pp. 1149–1163.

[39] J. Chen et al., “Darwin: Flexible learning-based CDN caching,” in Proc.
ACM SIGCOMM Conf., Sep. 2023, pp. 981–999.

[40] T. Zong, C. Li, Y. Lei, G. Li, H. Cao, and Y. Liu, “Cocktail edge caching:
Ride dynamic trends of content popularity with ensemble learning,” in
Proc. IEEE Conf. Comput. Commun. (IEEE INFOCOM), May 2021,
pp. 1–10.

[41] Z. Song, D. S. Berger, K. Li, and W. Lloyd, “Learning relaxed belady
for content distribution network caching,” in Proc. USENIX NSDI, Jan.
2020, pp. 529–544.

[42] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Ann. Statist., vol. 29, no. 5, pp. 1189–1232, Oct. 2001.

[43] Z. Akhtar et al., “AViC: A cache for adaptive bitrate video,” in Proc. 15th
Int. Conf. Emerg. Netw. Experiments Technol., Dec. 2019, pp. 305–317.

[44] D. Zhou, H. Yu, M. Kaminsky, and D. G. Andersen, “Fast software
cache design for network appliances,” in Proc. USENIX ATC, Jan. 2020,
pp. 657–671.

[45] J. Yang, A. Sabnis, D. S. Berger, K. Rashmi, and R. K. Sitaraman,
“C2DN: How to harness erasure codes at the edge for efficient content
delivery,” in Proc. USENIX NSDI, 2022, pp. 1159–1177.

[46] M. Garetto, E. Leonardi, and G. Neglia, “Similarity caching: Theory and
algorithms,” in Proc. IEEE Conf. Comput. Commun. (IEEE INFOCOM),
Jul. 2020, pp. 526–535.

[47] K. S. Elsayed, F. Geyer, and A. Rizk, “Utility-driven optimization of
TTL cache hierarchies under network delays,” in Proc. IFIP Netw. Conf.
(IFIP Netw.), Jun. 2024, pp. 249–257.

[48] X. Jin et al., “NetCache: Balancing key-value stores with fast in-
network caching,” in Proc. 26th Symp. Operating Syst. Princ., Oct. 2017,
pp. 121–136.

[49] G. Yan and J. Li, “Towards latency awareness for content delivery
network caching,” in Proc. USENIX ATC, 2022, pp. 789–804.

[50] H. Dai, B. Liu, H. Yuan, P. Crowley, and J. Lu, “Analysis of tandem PIT
and CS with non-zero download delay,” in Proc. IEEE Conf. Comput.
Commun. (IEEE INFOCOM), May 2017, pp. 1–9.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on March 25,2025 at 09:54:52 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/google/cluster-data


14 IEEE TRANSACTIONS ON NETWORKING

[51] M. Ahmadi, J. Roberts, E. Leonardi, and A. Movaghar, “On the
effectiveness of the PIT in reducing upstream demand in an NDN
router,” Perform. Eval., vol. 138, Apr. 2020, Art. no. 102081.

[52] M. Dehghan, B. Jiang, A. Dabirmoghaddam, and D. Towsley, “On the
analysis of caches with pending interest tables,” in Proc. 2nd ACM Conf.
Inf.-Centric Netw., Sep. 2015, pp. 69–78.

[53] K. Elsayed and A. Rizk, “Time-to-live caching with network delays:
Exact analysis and computable approximations,” IEEE/ACM Trans.
Netw., vol. 31, no. 3, pp. 1087–1100, Mar. 2023.

Haisheng Tan (Senior Member, IEEE) received the
B.E. degree (Hons.) in software engineering and
the B.S. degree (Hons.) in management from the
University of Science and Technology of China
(USTC), and the Ph.D. degree in computer science
from The University of Hong Kong (HKU). He is
currently a Professor with USTC. He has published
over 80 papers in prestigious journals and confer-
ences, mainly in the areas of the AIoT and edge
computing. His research interests include algorithms
and networking. He received the Best Paper Award

from WASA 2019, CWSN 2020, PDCAT 2020, and ICAPDS 2021.

Yi Wang received the B.Ec. degree from Shanghai
University of Finance and Economics (SUFE) in
2020. She is currently pursuing the M.S. degree
with the University of Science and Technology of
China (USTC). Her main research interests include
networking, edge computing, and algorithm design.

Chi Zhang received the B.Eng. degree in com-
puter science and technology from the University
of Science and Technology of China (USTC) with
the honor of the Talent Program in Computer and
Information Science and Technology in 2017 and
the Ph.D. degree in computer science and technology
from USTC in 2023. He is currently an Associate
Professor with Hefei University of Technology. His
main research interests include data center network-
ing, cloud computing, and algorithms. In 2023, he
received the prestigious Humboldt Research Fellow-

ship awarded by the Alexander von Humboldt Foundation of Germany.

Guopeng Li received the B.Eng. degree in computer
science and technology from Central South Univer-
sity in 2020. He is currently pursuing the Ph.D.
degree with the University of Science and Technol-
ogy of China (USTC). His main research interests
include edge intelligence, LLM-based agent, and
machine learning systems.

Haohua Du received the M.S. and Ph.D. degrees
from the Department of Computer Science, Illinois
Institute of Technology, USA, in 2015 and 2019,
respectively. She is currently an Assistant Professor
with the School of Cyber Science and Technol-
ogy, Beihang University. Her research interests
include wireless sensing, wireless communications,
and other IoT applications.

Zhenhua Han received the B.Eng. degree in
electronic and information engineering from the
University of Electronic Science and Technology
of China in 2014 and the Ph.D. degree from The
University of Hong Kong (HKU). He is currently a
Researcher with Microsoft Research Asia. Many of
his works have been published in top venues, such as
USENIX OSDI, IEEE INFOCOM, and IEEE/ACM
TRANSACTIONS ON NETWORKING. His research
interests include cloud computing, cluster schedul-
ing, machine learning systems, online algorithms,

and stochastic optimization.

Shaofeng H.-C. Jiang received the Ph.D. degree
from The University of Hong Kong. He is currently
an Assistant Professor with the Center on Frontiers
of Computing, Peking University (PKU). Before he
joined PKU, he was a Post-Doctoral Researcher with
the Weizmann Institute of Science and then an Assis-
tant Professor with Aalto University. His research
interests include theoretical computer science, with
a focus on algorithms for massive datasets, online
algorithms, and approximation algorithms.

Xiang-Yang Li (Fellow, IEEE) received the
bachelor’s degree from the Department of Com-
puter Science, Tsinghua University, in 1995, the
bachelor’s degree from the Department of Business
Management, Tsinghua University, in 1995, and the
M.S. and Ph.D. degrees from the Department of
Computer Science, University of Illinois at Urbana-
Champaign, in 2000 and 2001, respectively. He was
a Full Professor with Illinois Institute of Technology,
Chicago, IL, USA. He is currently a Full Professor
and the Executive Dean of the School of Computer

Science and Technology, University of Science and Technology of China,
Hefei, China. He published a monograph Wireless Ad Hoc and Sensor
Networks: Theory and Applications. His research interests include the artificial
intelligent Internet of Things, mobile computing, data sharing and trading, and
privacy. He is a Fellow of ACM. He is an ACM Distinguished Scientist.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on March 25,2025 at 09:54:52 UTC from IEEE Xplore.  Restrictions apply. 


